mRNA疫苗的研究进展Progress in research on mRNA vaccines
袁军鸿;杨昭庆;马绍辉;
摘要(Abstract):
近年来随着生物技术的发展,疫苗的研发策略不再仅限于传统的疫苗,曾经被认为有较多局限性的mRNA疫苗在通过一系列研究和改进后,表现出其优越性的一面,已经在肿瘤、感染性疾病及自身免疫性疾病的防控和治疗等方面展示出了良好的应用前景。本文对mRNA疫苗的结构设计和优化及传递系统和疾病防治应用方面取得的进展作一综述。
关键词(KeyWords): mRNA疫苗;结构优化;肿瘤治疗;感染性疾病;传递系统
基金项目(Foundation): 云南省高层次卫生健康技术人才培养专项(L-2018003);; 中国医学科学院医学与健康科技创新工程(2016-I2M-3-026)
作者(Authors): 袁军鸿;杨昭庆;马绍辉;
DOI: 10.13200/j.cnki.cjb.003630
参考文献(References):
- [1] PARDI N,HOGAN M J,PORTER F W,et al. m RNA vaccines-a new era in vaccinology[J]. Nat Rev Drug Discov,2018,17(4):261-279.
- [2] LE T,SUN C,CHANG J,et al. m RNA vaccine development for emerging animal and zoonotic diseases[J]. Viruses,2022,14(2):401.
- [3] ZHAO Y,MOON E,CARPENITO C,et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor[J]. Cancer Res,2010,70(22):9053-9061.
- [4] ZHOU C,MA L,XU H,et al. Meningeal lymphatics regulate radiotherapy efficacy through modulating anti-tumor immunity[J]. Cell Res,2022. doi:10.1038/s41422-022-00639-5.
- [5] KALLEN K J,HEIDENREICH R,SCHNEE M,et al. A novel,disruptive vaccination technology:self-adjuvanted RNActive?vaccines[J]. Hum Vaccin Immunother,2013,9(10):2263-2276.
- [6] HUANG H Y,MIAO M S,ZHU Y H,et al. m RNA vaccine delivery system based on liposome:research advances[J]. J Int Pharm Res,2019,46(5):339-346.(in Chinese)黄慧媛,苗明三,朱艳慧,等.基于脂质体的m RNA疫苗递送系统研究进展[J].国际药学研究杂志,2019,46(5):339-346.
- [7] MIAO H F,GUO Y,JIANG X X,et al. Progresses and challenges of m RNA vaccine research[J]. Immunol J,2016,32(5):446-449.(in Chinese)苗鹤凡,郭勇,江新香,等. m RNA疫苗研究进展及挑战[J].免疫学杂志,2016,32(5):446-449.
- [8] SHARIFNIA Z,BANDEHPOUR M,KAZEMI B,et al. Design and development of modified m RNA encoding core antigen of hepatitis C virus:a possible application in vaccine production[J]. Iran Biomed,2019,23(1):57-67.
- [9] TAN L,ZHENG T,LI M,et al. Optimization of an m RNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates[J]. Drug Deliv Transl Res,2020,10(3):678-689.
- [10] XIA M,YANG X L,YANG P H,et al. In vitro synthesis and immunogenicity of Mycrobacterium tuberculosis Ag85Bm RNA vaccine[J]. Immunol J,2019,35(5):404-408.(in Chinese)夏敏,杨晓岚,杨鹏辉,等.结核分枝杆菌Ag85B-m RNA疫苗的体外合成及其免疫原性研究[J].免疫学杂志,2019,35(5):404-408.
- [11] ORLANDINI VON NIESSEN A G,POLEGANOV M A,RECHNER C,et al. Improving m RNA-based therapeutic gene delivery by expression augmenting 3’-untranslated regions identified by cellular library screening[J]. Mol Ther,2019,27(4):824-836.
- [12] PARDI N,HOGAN M J,WEISSMAN D. Recent advances in m RNA vaccine technology[J]. Curr Opin Immunol,2020,65:14-20.
- [13] BAIERSDORFER M,BOROS G,MURAMATSU H,et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed m RNA[J]. Mol Ther Nucleic Acids,2019,15:26-35.
- [14] GóMEZ-AGUADO I,RODR?GUEZ-CASTEJóN J,VICENTEPASCUAL M,et al. Nanomedicines to deliver m RNA:State of the art and future perspectives[J]. Nanomaterials(Basel),2020,10(2):364-405.
- [15] GUIMARAES P P G,ZHANG R,SPEKTOR R,et al. Ionizable lipid nanoparticles encapsulating barcoded m RNA for accelerated in vivo delivery screening[J]. Control Release,2019,316:404-417.
- [16] HE W,EVANS A C,RASLEY A,et al. Cationic HDL mimeitics enhance in vivo delivery of self-replicating m RNA[J].Nanomed Nanotechnol Biol Med,2020,102154:1-10.
- [17] LOTTER C,ALTER C L,BOLTEN J S,et al. Incorporation of phosphatidylserine improves efficiency of lipid based gene delivery systems[J]. Eur J Pharm Biopharm,2022,172:134-143.
- [18] WONG G,GAO G F. An m RNA-based vaccine strategy against Zika[J]. Cell Res,2017,27(9):1077-1078.
- [19] FREYN A W,JAMILE R S,ROSADO V C,et al. A multitargeting,nucleoside-modified m RNA influenza virus vaccine provides broad protection in mice[J]. Mol Ther,2020,28(7):1569-1584.
- [20] QIU Y,MAN RCH,LIAO Q,et al. Effective m RNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide[J]. J Controlled Release,2019,314:102-115.
- [21] LI M,LI Y,PENG K,et al. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune res-ponses[J]. Acta Biomater,2017,64:237-248.
- [22] CHAHAL J S,KHAN O F,COOPER C L,et al. DendrimerRNA nanoparticles generate protective immunity against lethal Ebola,H1N1 influenza,and Toxoplasma gondii challenges with a single dose[J]. Proc Natl Acad Sci,2016,113(29):4133-4142.
- [23] VASILICHIN V A,TSYMBAL S A,FAKHARDO A F,et al. Effects of metal oxide nanoparticles on Toll-like receptor mRNAs in human monocytes[J]. Nanomaterials,2020,10(1):127-138.
- [24] ROSIGKEIT S,MENG M,GRUNWITZ C,et al. Monitoring translation activity of m RNA-loaded nanoparticles in mice[J].Mol Pharm,2018,15(9):3909-3919.
- [25] CHEN P,LIU X,SUN Y,et al. Dendritic cell targeted vaccines:Recent progresses and challenges[J]. Hum Vaccin&Immunother,2016,12(3):612-622.
- [26] FAN Y N. Cationic lipid-assisted nanoparticle for mRNA cancer vaccine delivery[D]. Hefei:University of Science and Technology of China,2019.(in Chinese)范亚楠.阳离子脂质辅助的纳米颗粒递送肿瘤mRNA疫苗的研究[D].安徽合肥:中国科学技术大学,2019.
- [27] ALEGR魱A B,ALFARO C. Clinical grade adjuvants to mature CD141+DCs for immunotherapy[J]. Front Biosci(Elite Ed),2022,14(1):2.
- [28] REAP E A,SURYADEVARA C M,BATICH K A,et al. Dendritic cells enhance polyfunctionality of adoptively transferred T cells that target cytomegalovirus in glioblastoma[J]. Cancer Res,2018,78(1):256-264.
- [29] MIAO L,LI L,HUANG Y,et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STINGmediated immune cell activation[J]. Nat Biotechnol,2019,37(10):1174-1185.
- [30] VAN HOECKE L,ROOSE K. How mRNA therapeutics are entering the monoclonal antibody field[J]. Transl Med,2019,17(1):54-67.
- [31] JIN Y,YU X M. Research progress of anti-tumor antibodies[J]. Cancer Res Clin,2015,27(8):572-576.(in Chinese)金莹,余新民.抗肿瘤抗体药物的研究进展[J].肿瘤研究与临床,2015,27(8):572-576.
- [32] RYBAKOVA Y,KOWALSKI P S,HUANG Y,et al. mRNA delivery for therapeutic anti-HER2 antibody expression in vivo[J]. Mol Ther,2019,27(8):1415-1423.
- [33] KOSE N,FOX J M,SAPPARAPU G. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection[J]. Sci Immunol,2019,4(35):eaaw6647.
- [34] WANG H,ZHENG L S. Research progress on the detection methods for the Nipah virus[J]. Chin J Virol,2019,35(6):948-955.(in Chinese)王浩,郑丽舒.尼帕病毒检测方法研究进展[J].病毒学报,2019,35(6):948-955.
- [35] LO M K,SPENGLER J R,WELCH S R,et al. Evaluation of a single-dose nucleoside-modified messenger RNA vaccine encoding Hendra virus-Soluble glycoprotein against lethal Nipah virus challenge in Syrian hamsters[J]. J Infect Dis,2020,221(Suppl 4):S493-S498.
- [36] YU K,AN L P,WANG W,et al. Research progress of influenza vaccine[J]. Modern Prevent Med,2017,44(14):2644-2647.(in Chinese)于琨,安丽平,王伟,等.流感疫苗的研究进展[J].现代预防医学,2017,44(14):2644-2647.
- [37] PARDI N,PARKHOUSE K,KIRKPATRICK E,et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies[J]. Nat Communi,2018,9(1):3361-3372.
- [38] ZENG C,ZHANG C,WALKER P G,et al. Formulation and delivery technologies for m RNA vaccines[J]. Curr Topics Microbiol Immunol,2020. doi:10.1007/82_2020_217.
- [39] MASUDA T,MURAKAMI K,SUGIURA K,et al. A phase 1/2 randomised placebo-controlled study of the COVID-19 vaccine mRNA-1273 in healthy Japanese adults:An interim report[J].Vaccine,2022,40(13):2044-2052.
- [40] AZZI L,DALLA GASPERINA D,VERONESI G,et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients[J]. EBioMed,2022,75:103788.
- [41] DAS L J,ISLOOR S,SANTOSH A K,et al. A comparative evaluation of the estimation of rabies virus antibodies among free-roaming,vaccinated dogs in Bengaluru,India[J]. Viruses,2022,14(3):484.
- [42] ALBERER M,GNAD-VOGT U,HONG H S,et al. Safety and immunogenicity of a m RNA rabies vaccine in healthy adults:an open-label,non-randomised,prospective,first-in-human phase1 clinical trial[J]. Lancet,2017,390(10101):1511-1520.
- [43] STOKES A,PION J,BINAZON O,et al. Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats[J]. Regulatory Toxicol Pharmacol,2020,113:104648.
- [44] BUCHKO G W,ABENDROTH J,ROBINSON H. Crystal structure of a macrophage migration inhibitory factor from Giardia lamblia[J]. J Struct&Funct Genomics,2013,14(2):47-57.
- [45] VERSTEEG L,ALMUTAIRI M M,HOTEZ P J,et al. Enlisting the mRNA vaccine platform to combat parasitic infections[J]. Vaccines,2019,7(4):122.
- [46] BAEZA GARCIA A,SIU E,SUN T,et al. Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection[J]. Nat Communi,2018,9(1):2714.
- [47] YU J,TANG R,DING K,et al. Epigenetic modifications in the pathogenesis of systemic sclerosis[J]. Int J Gen Med,2022,15:3155-3166.
- [48] DERDELINCKX J,MANSILLA M J,DE LAERE M,et al.Clinical and immunological control of experimental autoimmune encephalomyelitis by tolerogenic dendritic cells loaded with MOG-encoding m RNA[J]. J Neuroinflam,2019,16(1):167.
- [49] WEISS R,SCHEIBLHOFER S,THALHAMER J. Generation and evaluation of prophylactic mRNA vaccines against allergy[J]. Mtd Mol Biol,2017,1499:123-129.
- [50] SCHEIBLHOFER S,THALHAMER J,WEISS R. DNA and mRNA vaccination against allergies[J]. Pediatr Allergy Immunol,2018,29(7):679-688.