mRNA疫苗及其作用机制的研究进展Progress in research on mRNA vaccine and its mechanism
孟子延;马丹婧;高雪;李琦涵;
摘要(Abstract):
目前,重症急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)引起的新型冠状病毒病(Corona Virus Disease 2019,COVID-19)仍在全球迅速蔓延,给人类生活带来了巨大的健康隐患和经济负担,接种疫苗是预防和控制该病毒传播的重要途径。mRNA疫苗是将含有编码抗原蛋白的mRNA导入人体,直接进行翻译,形成相应的抗原蛋白,从而诱导机体产生特异性免疫应答,达到预防免疫的作用。mRNA疫苗是继灭活疫苗、减毒活疫苗、亚单位疫苗和病毒载体疫苗后的第三代疫苗,具有针对病原体变异反应速度快、生产工艺简单、易规模化扩大等特点。本文就mRNA疫苗的免疫学特性、分子设计、递送系统、安全性的研究进展及其相应机制作一综述。
关键词(KeyWords): mRNA疫苗;重症急性呼吸综合征冠状病毒2;新型冠状病毒病;安全性
基金项目(Foundation): 国家重点研发计划项目(2020YFC0849700)
作者(Authors): 孟子延;马丹婧;高雪;李琦涵;
DOI: 10.13200/j.cnki.cjb.003368
参考文献(References):
- [1]MALONE R W,FELGNER P L,VERMA I M.Cationic liposome-mediated RNA transfection[J].Proc Natl Acad Sci USA,1989,86(16):6077-6081.
- [2]WOLFF J A,MALONE R W,WILLIAMS P,et al.Direct gene transfer into mouse muscle in vivo[J].Science,1990,247(4949 Pt 1):1465-1468.
- [3]PARDI N,HOGAN M J,PELC R S,et al.Zika virus protection by a single low-dose nucleoside-modified m RNA vaccination[J].Nature,2017,543(7644):248-251.
- [4]PARDI N,SECRETO A J,SHAN X,et al.Administration of nucleoside-modified m RNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge[J].Nat Commun,2017,8:14630.
- [5]CHAHAL J S,KHAN O F,COOPER C L,et al.DendrimerRNA nanoparticles generate protective immunity against lethal Ebola,H1N1 influenza,and Toxoplasma gondii challenges with a single dose[J].Proc Natl Acad Sci USA,2016,113(29):E4133-E4142.
- [6]MEYER M,HUANG E,YUZHAKOV O,et al.Modified m RNA-based vaccines elicit robust immune responses and protect guinea pigs from Ebola virus disease[J].J Infect Dis,2018,217(3):451-455.
- [7]PARDI N,LABRANCHE C C,FERRARI G,et al.Characterization of HIV-1 nucleoside-modified m RNA vaccines in rabbits and rhesus macaques[J].Mol Ther Nucleic Acids,2019,15:36-47.
- [8]SAHIN U,TURECI O.Personalized vaccines for cancer immunotherapy[J].Science,2018,359(6382):1355-1360.
- [9]THANH L T,ANDREADAKIS Z,KUMAR A,et al.The COVID-19 vaccine development landscape[J].Nat Rev Drug Discov,2020,19(5):305-306.
- [10]PROMPETCHARA E,KETLOY C,PALAGA T.Immune responses in COVID-19 and potential vaccines:Lessons learned from SARS and MERS epidemic[J].Asian Pac J Allergy Immunol,2020,38(1):1-9.
- [11]POLACK F P,THOMAS S J,KITCHIN N,et al.Safety and efficacy of the BNT162b2 m RNA Covid-19 vaccine[J].N Engl J Med,2020,383(27):2603-2615.
- [12]BADEN L R,EL S H,ESSINK B,et al.Efficacy and safety of the m RNA-1273 SARS-Co V-2 vaccine[J].N Engl J Med,2021,384(5):403-416.
- [13]VAN NUFFEL A M,BENTEYN D,WILGENHOF S,et al.Dendritic cells loaded with m RNA encoding full-length tumor antigens prime CD4+and CD8+T cells in melanoma patients[J].Mol Ther,2012,20(5):1063-1074.
- [14]KARIKO K,MURAMATSU H,LUDWIG J,et al.Generating the optimal m RNA for therapy:HPLC purification eliminates immune activation and improves translation of nucleosidemodified,protein-encoding m RNA[J].Nucleic Acids Res,2011,39(21):e142.
- [15]KARIKO K,MURAMATSU H,LUDWIG J,et al.Generating the optimal m RNA for therapy:HPLC purification eliminates immune activation and improves translation of nucleoside-modified,protein-encoding m RNA[J].Nucleic Acids Res,2011,39(21):e142.
- [16]KARIKO K,NI H,CAPODICI J,et al.m RNA is an endogenous ligand for Toll-like receptor 3[J].J Biol Chem,2004,279(13):12542-12550.
- [17]YONEYAMA M,KIKUCHI M,NATSUKAWA T,et al.The RNA helicase RIG-I has an essential function in doublestranded RNA-induced innate antiviral responses[J].Nat Immunol,2004,5(7):730-737.
- [18]HERVAS-STUBBS S,PEREZ-GRACIA J L,ROUZAUT A,et al.Direct effects of type I interferons on cells of the immune system[J].Clin Cancer Res,2011,17(9):2619-2627.
- [19]CHEN K,LIU J,CAO X.Regulation of type I interferon signaling in immunity and inflammation:A comprehensive review[J].J Autoimmun,2017,83:1-11.
- [20]ZHONG Z,MCCAFFERTY S,COMBES F,et al.m RNA therapeutics deliver a hopeful message[J].Nano Today,2018,23:16-39.
- [21]SAHIN U,KARIKO K,TURECI O.m RNA-based therapeutics--developing a new class of drugs[J].Nat Rev Drug Discov,2014,13(10):759-780.
- [22]KORMANN M S,HASENPUSCH G,ANEJA M K,et al.Expression of therapeutic proteins after delivery of chemically modified m RNA in mice[J].Nat Biotechnol,2011,29(2):154-157.
- [23]KARIKO K,MURAMATSU H,WELSH F A,et al.Incorporation of pseudouridine into m RNA yields superior nonimmunogenic vector with increased translational capacity and biological stability[J].Mol Ther,2008,16(11):1833-1840.
- [24]KORMANN M S,HASENPUSCH G,ANEJA M K,et al.Expression of therapeutic proteins after delivery of chemically modified m RNA in mice[J].Nat Biotechnol,2011,29(2):154-157.
- [25]SCHLAKE T,THESS A,FOTIN-MLECZEK M,et al.Developing m RNA-vaccine technologies[J].RNA Biol,2012,9(11):1319-1330.
- [26]GOODARZI H,NAJAFABADI H S,OIKONOMOU P,et al.Systematic discovery of structural elements governing stability of mammalian messenger RNAs[J].Nature,2012,485(7397):264-268.
- [27]KUDLA G,LIPINSKI L,CAFFIN F,et al.High guanine and cytosine content increases m RNA levels in mammalian cells[J].PLo S Biol,2006,4(6):e180.
- [28]SAMPLE P J,WANG B,REID D W,et al.Human 5′UTRdesign and variant effect prediction from a massively parallel translation assay[J].Nat Biotechnol,2019,37(7):803-809.
- [29]JIA L,MAO Y,JI Q,et al.Decoding m RNA translatability and stability from the 5′UTR[J].Nat Struct Mol Biol,2020,27(9):814-821.
- [30]TREPOTEC Z,ANEJA M K,GEIGER J,et al.Maximizing the translational yield of m RNA therapeutics by minimizing 5′-UTRs[J].Tissue Eng Part A,2019,25(1-2):69-79.
- [31]PONTRELLI L,SIDIROPOULOS K G,ADELI K.Translational control of apolipoprotein B m RNA:regulation via cis elements in the 5′and 3′untranslated regions[J].Biochemistry,2004,43(21):6734-6744.
- [32]PELLETIER J,SONENBERG N.Insertion mutagenesis to increase secondary structure within the 5′noncoding region of a eukaryotic m RNA reduces translational efficiency[J].Cell,1985,40(3):515-526.
- [33]ORLANDINI V N A,POLEGANOV M A,RECHNER C,et al.Improving m RNA-based therapeutic gene delivery by expression-augmenting 3′UTRs identified by cellular library screening[J].Mol Ther,2019,27(4):824-836.
- [34]JEMIELITY J,FOWLER T,ZUBEREK J,et al.Novel“antireverse”cap analogs with superior translational properties[J].RNA,2003,9(9):1108-1122.
- [35]KUHN A N,DIKEN M,KREITER S,et al.Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo[J].Gene Ther,2010,17(8):961-971.
- [36]KOWALSKA J,LEWDOROWICZ M,ZUBEREK J,et al.Synthesis and characterization of m RNA cap analogs containing phosphorothioate substitutions that bind tightly to e IF4E and are resistant to the decapping pyrophosphatase Dcp S[J].RNA,2008,14(6):1119-1131.
- [37]DEVARKAR S C,WANG C,MILLER M T,et al.Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I[J].Proc Natl Acad Sci USA,2016,113(3):596-601.
- [38]SCHUBERTH-WAGNER C,LUDWIG J,BRUDER A K,et al.A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2′O-methylated self RNA[J].Immunity,2015,43(1):41-51.
- [39]VAIDYANATHAN S,AZIZIAN K T,HAQUE A,et al.Uridine depletion and chemical modification increase Cas9 m RNAactivity and reduce immunogenicity without HPLC purification[J].Mol Ther Nucleic Acids,2018,12:530-542.
- [40]CHEN Y H,COLLER J.A universal code for m RNA stability[J].Trends Genet,2016,32(11):687-688.
- [41]HOLTKAMP S,KREITER S,SELMI A,et al.Modification of antigen-encoding RNA increases stability,translational efficacy,and T-cell stimulatory capacity of dendritic cells[J].Blood,2006,108(13):4009-4017.
- [42]HOLTKAMP S,KREITER S,SELMI A,et al.Modification of antigen-encoding RNA increases stability,translational efficacy,and T-cell stimulatory capacity of dendritic cells[J].Blood,2006,108(13):4009-4017.
- [43]MOCKEY M,GONCALVES C,DUPUY F P,et al.m RNAtransfection of dendritic cells:synergistic effect of ARCA m RNAcapping with Poly(A)chains in cis and in trans for a high protein expression level[J].Biochem Biophys Res Commun,2006,340(4):1062-1068.
- [44]PARDI N,PARKHOUSE K,KIRKPATRICK E,et al.Nucleoside-modified m RNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies[J].Nat Commun,2018,9(1):3361.
- [45]SAHIN U,KARIKO K,TURECI O.m RNA-based therapeutics-developing a new class of drugs[J].Nat Rev Drug Discov,2014,13(10):759-780.
- [46]JOHANNING F W,CONRY R M,LOBUGLIO A F,et al.ASindbis virus m RNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo[J].Nucleic Acids Res,1995,23(9):1495-1501.
- [47]CONRY R M,LOBUGLIO A F,WRIGHT M,et al.Characterization of a messenger RNA polynucleotide vaccine vector[J].Cancer Res,1995,55(7):1397-1400.
- [48]HOERR I,OBST R,RAMMENSEE H G,et al.In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies[J].Eur J Immunol,2000,30(1):1-7.
- [49]ISLAM M A,REESOR E K,XU Y,et al.Biomaterials for m RNA delivery[J].Biomater Sci,2015,3(12):1519-1533.
- [50]JAYARAMAN M,ANSELL S M,MUI B L,et al.Maximizing the potency of si RNA lipid nanoparticles for hepatic gene silencing in vivo[J].Angew Chem Int Ed Engl,2012,51(34):8529-8533.
- [51]CHENG X,LEE R J.The role of helper lipids in lipid nanoparticles(LNPs) designed for oligonucleotide delivery[J].Adv Drug Deliv Rev,2016,99(Pt A):129-137.
- [52]WITTRUP A,AI A,LIU X,et al.Visualizing lipid-formulated si RNA release from endosomes and target gene knockdown[J].Nat Biotechnol,2015,33(8):870-876.
- [53]YANEZ A M,KJELLMAN T,BARTESAGHI S,et al.Successful reprogramming of cellular protein production through m RNA delivered by functionalized lipid nanoparticles[J].Proc Natl Acad Sci USA,2018,115(15):E3351-E3360.
- [54]JULIANO R L.Intracellular trafficking and endosomal release of oligonucleotides:What we know and what we don′t[J].Nucleic Acid Ther,2018,28(3):166-177.
- [55]PATEL S,ASHWANIKUMAR N,ROBINSON E,et al.Boosting intracellular delivery of lipid nanoparticle-encapsulated m RNA[J].Nano Lett,2017,17(9):5711-5718.
- [56]PHUA K K.Towards targeted delivery systems:Ligand conjugation strategies for m RNA nanoparticle tumor vaccines[J].JImmunol Res,2015,2015:680620.
- [57]DOMEIER P P,CHODISETTI S B,SCHELL S L,et al.B-cell-intrinsic type 1 interferon signaling is crucial for loss of tolerance and the development of autoreactive B cells[J].Cell Rep,2018,24(2):406-418.
- [58]WALSH S R,BASTIN D,CHEN L,et al.Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity[J].J Clin Invest,2019,129(2):518-530.
- [59]SEBASTIAN M,SCHRODER A,SCHEEL B,et al.A phase I/IIa study of the m RNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer[J].Cancer Immunol Immunother,2019,68(5):799-812.
- [60]GRECO A,GALLO A,FUSCONI M,et al.Bell′s palsy and autoimmunity[J].Autoimmun Rev,2012,12(2):323-328.
- [61]REPAJIC M,LAI X L,XU P,et al.Bell′s Palsy after second dose of Pfizer COVID-19 vaccination in a patient with history of recurrent Bell′s palsy[J].Brain Behav Immun Health,2021,13:100217.
- [62]XIA S,ZHANG Y,WANG Y,et al.Safety and immunogenicity of an inactivated SARS-Co V-2 vaccine,BBIBP-Cor V:a randomised,double-blind,placebo-controlled,phase 1/2 trial[J].Lancet Infect Dis,2021,21(1):39-51.
- [63]ZHANG Y,ZENG G,PAN H,et al.Safety,tolerability,and immunogenicity of an inactivated SARS-Co V-2 vaccine in healthy adults aged 18-59 years:a randomised,double-blind,placebo-controlled,phase 1/2 clinical trial[J].Lancet Infect Dis,2021,21(2):181-192.
- [64]PALACIOS R,PATINO E G,DE OLIVEIRA P R,et al.Double-blind,randomized,placebo-controlled phase III clinical trial to evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19 (inactivated) vaccine manufactured by Sinovac-PROFISCOV:A structured summary of a study protocol for a randomised controlled trial[J].Trials,2020,21(1):853.
- [65]KEECH C,ALBERT G,CHO I,et al.Phase 1-2 trial of a SARS-Co V-2 recombinant spike protein nanoparticle vaccine[J].N Engl J Med,2020,383(24):2320-2332.
- [66]RICHMOND P,HATCHUEL L,DONG M,et al.Safety and immunogenicity of S-Trimer(SCB-2019),a protein subunit vaccine candidate for COVID-19 in healthy adults:a phase 1,randomised,double-blind,placebo-controlled trial[J].Lancet,2021,397(10275):682-694.
- [67]FOLEGATTI P M,EWER K J,ALEY P K,et al.Safety and immunogenicity of the Ch Ad Ox1 n Co V-19 vaccine against SARS-Co V-2:a preliminary report of a phase 1/2,singleblind,randomised controlled trial[J].Lancet,2020,396(10249):467-478.
- [68]ZHU F C,GUAN X H,LI Y H,et al.Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19vaccine in healthy adults aged 18 years or older:a randomised,double-blind,placebo-controlled,phase 2 trial[J].Lancet,2020,396(10249):479-488.
- [69]RAMASAMY M N,MINASSIAN A M,EWER K J,et al.Safety and immunogenicity of Ch Ad Ox1 n Co V-19 vaccine administered in a prime-boost regimen in young and old adults(COV002):a single-blind,randomised,controlled,phase 2/3trial[J].Lancet,2021,396(10267):1979-1993.